If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-28t+15=0
a = 4.9; b = -28; c = +15;
Δ = b2-4ac
Δ = -282-4·4.9·15
Δ = 490
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{490}=\sqrt{49*10}=\sqrt{49}*\sqrt{10}=7\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-7\sqrt{10}}{2*4.9}=\frac{28-7\sqrt{10}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+7\sqrt{10}}{2*4.9}=\frac{28+7\sqrt{10}}{9.8} $
| 2x+59=16x+45 | | x(34x+x-158)=-6 | | 3x−10=5x+20 | | x/6+29=36 | | 7(3+4)=2m+20 | | 4x=-6x-4x | | (8x)26=90 | | 15+8x=24+5 | | 4y=72-5y | | 15+8x=24+5x | | 16+5w=13w | | 7d+4d+2d-2-5d=0 | | 4w=5w-9 | | 28-9x=-17 | | 4-6x=3x-2x-31 | | 8x+-9=2x+27 | | 19=2x+13 | | 10-n=36 | | 3x2–x=14 | | 3Y+x=95 | | 13^2+5^2=c^2 | | 12(n+9)=120 | | 4x*10=90 | | x-5/6=-5/64 | | 3w=99 | | a^2+(^2=15^2 | | 9.1-6a=-7.7 | | 53-7x=31 | | 672=(2x-8)(x+8) | | -16+61=-5(x+2) | | -11b+7=40b= | | 1/10n=108 |